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Abstract —This paper reports the investigations of the 
potential of a new evolutionary algorithm based on 
probabilistic models - the quantum-inspired evolutionary 
algorithm in finding solutions of inverse problems. To enhance 
the convergence speed without compromising the diversity 
performances of the populations, a new definition of local 
information sharing is introduced and implemented. Also, to 
guarantee the balance between explorations and exploitations, 
a mechanism for global information sharing is proposed. The 
proposed algorithm is evaluated on both low- and high-
frequency inverse problems with promising results. 

I. QUANTUM-INSPIRED EVOLUTIONARY ALGORITHM 
Hitherto, evolutionary algorithms (EA) have become 

the standards for solving inverse problems [1],[2]. However, 
the three key operators such as selection, crossover and 
mutation are very complex in terms of both theory and 
numerical implementation. Moreover, the components of 
EAs, such as population size, variation operators, parent 
selection, reproduction and inheritance, survival 
competition methods, among others, must be designed 
properly before one can secure a good balance between 
exploration and exploitation searches [3]. In this regard, 
increasing efforts have been devoted to Evolutionary 
Algorithms based on Probabilistic Models (EAPM) to 
overcome the disruptive effects when the aforementioned 
genetic operators are implemented [4]. Since EAPMs 
explicitly extract global statistical information from their 
previous searches to build probability distribution models 
of promising solutions, there are no traditional genetic 
operators in EAPMs. The Quantum-inspired Evolutionary 
Algorithm (QEA) [3],[5], which applies quantum 
computing principle to enhance the classical evolutionary 
algorithms, is a kind of EMPMs, and it can, moreover, treat 
the balance between the explorations and exploitations 
readily. Nevertheless, the application of QEA to inverse 
problems has yet to be studied and reported.  

A. Quantum Computing Principles [6] 
In quantum computing, the smallest information unit is 

a quantum bit or Q-bit, a pair of complex numbers [α β]T. 
In contrast to a traditional binary bit, besides the state “1” 
or “0”, a Q-bit may also be in any superposition of both 
states. Thus, the state |Ψ 〉 of a Q-bit [α β]T is defined as 

| | 0 |1Ψ α β〉 = 〉 + 〉                               (1) 
where |α|2 and |β|2 give, respectively, the probabilities that 
the Q-bit will be found in “0” and “1” with the following 
normalization condition 

2 2| | | | 1α β+ =                                 (2) 
The corresponding analogue of a traditional individual 

in quantum computing is a Q-bit individual of a string of m 
Q-bits as given by 
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where 2 2| | | | 1 ( 1,2, , )i i i mα β+ = = . 
Obviously, evolutionary algorithms with a Q-bit 

probabilistic representation have better characteristics in 
population diversities [3]. To modify the probabilities αi 
and βi, some quantum gates are generally applied. 
Moreover, since (3) is a probabilistic representation of a 
decision parameter, it is generally 
observed/collapsed/measured to form a specific binary 
individual. 

B. A QEA for Inverse Problems 
The proposed QEA is a quantum population based 

evolutionary algorithm modified on the most illustrative 
version of [3]. In the description that follows, 
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and { }1 2( ) , , ,t t t
np t p p p=  is the binary population 

obtained after observing ( )Q t , and a comprehensive 
definition and description of these parameters are given in 
[3]. To facilitate the explanation of the proposed QEA, its 
iterative procedures are described as: 

Procedure of QEA for Inverse Problems 
1) initialize: Q(t), B(t) (the vector storing the elitist 

solutions of Q(t)) 
2)  while (not termination condition) do 
3)           make P (t) by observing Q(t) 
4)           evaluate P(t) 
5)           update B(t) 
6)           update Q(t) using Q-gates to shift to B(t) 
7) if (global synchronization condition) then update B(t) 

globally 
8)  end while 

To share the information gathered by different 
individuals to enhance the convergence speed, in a 
metaphor to particle swarm optimization algorithms, the 
elitist solution t

ib  of a Q-bit individual t
iq  is defined as and 

updated to be the best one among all the explored solutions 
by t

iq  and its neighbors in the latest Nl-generations. The 
neighborhood is defined in a topological sense. Moreover, 
the usage of the best solutions in the latest N-generations 
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rather than in the total generations so far explored will 
guarantee the diversity of the population since an elitist 
solution can be kept as the attractor for a specific Q-
individual only for a maximum number of Nl-generations. 

To compromise the best balance between explorations 
and exploitations, the global information sharing in Step 7 
is controlled by a parameter Sg. The value of this parameter 
is automatically updated from its maximal to minimal 
values in the searching process such that the search will 
favor exploration in the starting stage, and it will be 
incrementally shifted to bias the exploitations around some 
promising solutions in the final stage of the search. 

To use the global statistical information extracted from 
the previous searches and build the probability distribution 
model of promising solutions, a quantum gate called 
rotation gate is used. To simplify the structure and 
implementation of the proposed QEA, the information 
sharing in the lowest level as commonly used in the 
available QEAs is deliberately removed. 

II. NUMERICAL APPLICATIONS 

A. Case Study One 
To evaluate the performances of the proposed QEA, a 

high frequency inverse problem, the second example of [7], 
is firstly studied. The problem is to optimize the geometry 
of a 28-element antenna array for SideLobe levels (SLL) 
suppression in the region of [00, 1800] and to prescribe nulls 
at 550, 57.50, 600, 1200, 122.50, 1260. After 10645 iterations 
in a typical run, the proposed algorithm converges to a final 
solution. The field pattern of the optimized antenna array of 
the proposed QEA is compared with that of the optimized 
array when a well developed PSO [7] is used to solve the 
same problem in Fig. 1. It is clear that the proposed QEA 
can suppress SLL to lower levels compared to that of the 
well developed PSO of [7] with the same main beam and 
null placements. It also produces a far closer pattern to the 
desired one when compared to the available optimizer, PSO.  

 
Fig.1. Comparison of field patterns for the optimized antenna array 

obtained using the proposed QEA and the well developed PSO of [7].  

B. Case Study Two  
A low frequency inverse problem, the Team Workshop 

problem 22 of a superconducting magnetic energy storage 
configuration with 8 free parameters as reported in [8] (Fig. 
2), is solved by using the proposed QEA as a second 
application example. In the numerical experiments, the 
performance parameters are determined based on a two-
dimensional finite element analysis. Under such conditions, 
the proposed algorithm is employed for searching the 
global optimal solution of the SMES device. Table I 
tabulates the finally optimized results of a typical run of the 
proposed QEA as well as the best ones obtained so far by 
IGTE [8]. It can be seen that the proposed QEA can find 
close approximations to the so far searched best ones with a 
small number of iterations in a relatively short span of time. 

 

Fig. 2. The schematic diagram of a SMES. 
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TABLE I 
PERFORMANCE COMPARISON OF THE PROPOSED METHOD AND THE IGTE SOLUTION FOR THE SMES CONFIGURATION 

Results R1(m) R2(m) h1/2(m) h2/2(m) d1(m) d2(m) J1(MA/m2) J2(MA/m2) fobj No. iterations
Proposed 1.5704 2.1012 0.7844 1.4191 0.6001 0.2570 17.3358 -12.9658 6.7239×10-3 2186 
By IGTE 1.5703 2.0999 0.7846 1.4184 0.5943 0.2562 17.3367 -12.5738 5.5203×10-3 / 

 


